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A pure component is supercritical when its temperature and pressure are above
the temperature and pressure of the critical point (CP). In the supercritical
domain of the phase diagram, there no longer exists a difference between
gaseous and liquid states, and fluids are in an intermediate and somewhat
paradoxical state where their thermophysical properties are similar to those of
gases for some of them and those of liquids for others. Taking into account the
gravity, the diverging compressibility at the CP induces a stable stratification of
the fluid density. The stratification is significant, sometimes as much as 10% in
a one cm layer. For example, a one cm high cell containing He3 at 3 mK above
its critical temperature is equivalent to a 180 m high column of air or a 7 km
high column of water in terms of stratification. Therefore, supercritical fluids
(SCFs) at the scale of the laboratory share several features with large geophysi-
cal systems. This observation has led several authors into suggesting their use as
laboratory models for geophysical flows. However, the peculiarity of near-criti-
cal systems could make this analogy fail. In the present work, we have inves-
tigated the analogy between both kinds of systems (SCFs at small scale and
geophysical flows at large ones) through the study of two examples: the onset of
convection in a SCF layer subjected to an adverse temperature gradient, and the
generation of internal gravity waves in an isothermal SCF layer. In both cases,
the use of asymptotic techniques and of stability analysis has shown that the
role of the initial stratification was dominant. At the same time, the fluid flow
has been shown to be very similar to that of weakly compressible fluids, the
peculiar phenomena specific to SCFs being in this case of second order.

KEY WORDS: adiabatic temperature gradient; critical point; internal gravity
waves; linear stability; Rayleigh criterion; supercritical fluids.



1. INTRODUCTION

A supercritical fluid (SCF) is a fluid in conditions such that the values of
the state variables are greater than their critical values. The critical values
are those of the coordinates of the top of the liquid-vapor coexistence
curve, in a phase diagram. Beyond that curve, the fluid can pass conti-
nously from its liquid state to its gaseous state: the fluid is somewhat
between a gas and a liquid, which gives it properties that seem paradoxical
at first sight. When getting close to the liquid-vapor critical point (CP), the
isothermal compressibility diverges (gaseous behavior), the heat capacities
at constant pressure or constant volume and the thermal conductivity also
diverge, while the density is very large (liquid behavior). A SCF can thus be
described as a dense highly compressible fluid in which heat diffuses slower
and slower when getting closer to the CP.

By going around the CP, the properties of a SCF can be modified in
an easy and continous way by slightly raising or diminishing the tempera-
ture or pressure. This property has made SCFs very convenient to a lot of
industrial processes such as extraction, food processing, space technology,
pharmaceuticals, etc., although their hydrodynamics are still not under-
stood properly. Indeed, it is only in the 1990s that SCF hydrodynamics
have known a rebirth of interest with the discovery of a fourth mode of
heat transfer, the piston effect (PE) [1–3]. This effect is responsible for the
very fast temperature equilibration close to Tc, contradicting the expected
critical slowing down of diffusive processes. The unexpectedly rapid heat
transfer is due to the high compressibility of a SCF. Indeed, boundary
layers form near the heated boundaries which expand or contract depend-
ing on whether the wall is hotter or cooler than the fluid. This induces suc-
cessive adiabatic compressions and expansions of the bulk fluid and, hence,
its adiabatic heating or cooling. Moreover, under gravity, a SCF, which is
highly compressible and dense, collapses under its own weight to form a
large density gradient. For example, density inhomogeneities as large as
10% can easily be observed in centimeter-length cells filled with such a
fluid [4, 5]. This stratification gives SCF characteristics that are usually
met only in large-scale geophysical flows. For example, it is now well
known that convection in an SCF cell subjected to an adverse temperature
gradient is dominated by the adiabatic temperature gradient (ATG) [6, 7],
a property that is encountered in the atmosphere for air layers of a few tens
of meters high or more [8, 9]. In the same way, internal gravity waves
(IGW) have been observed in supercritical xenon [5], even in centimeter-
length cells.

These observations have suggested that SCFs could be used as exper-
imental models for geophysical flows where stratification effects are
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dominant [5, 10]. Indeed, in a 1-cm high fluid cell filled with helium 3 mK
above its critical point, the relative stratification is equivalent to the one
observed in 180 m of air or 7 km of pure water. Meteorologists have shown
that the stratification of density within parts of the atmosphere is such that
IGW appear, and significally affect certain observed processes, while
oceanographers have shown the importance of IGW within regions of the
ocean with substantial density stratification [11]. So, experiments con-
ducted in a few cm high cell filled with a stably stratified supercritical fluid
(that has the same properties as a large-scale fluid system) could be a better
choice than the more common use of stratified salt-water tanks, whose
stratification is meant to vanish within a few hours. Up to now, this
suggestion has mainly been applied to the study of turbulent convection at
large Rayleigh numbers [12, 13]. We wanted to show the relevance of the
use of these fluids as experimental models through two examples, the onset
of convection and the dynamics of internal gravity waves. To that objec-
tive, we used a matched asymptotic analysis to derive linearized perturba-
tion equations from the governing equations of SCF hydrodynamics.
A modified Rayleigh criterion was established for the onset of convection
[7]. We also checked that the peculiar hydrodynamics of SCFs (PE) did
not interefere with the wave generation, and confirmed analytically that a
simple system of equations describing incompressible fluids can be used to
model the problem [10]. Both these results give credibility to the analogy
between SCF hydrodynamics and geophysical fluid flows.

2. ONSET OF CONVECTION IN A RAYLEIGH-BÉNARD
CONFIGURATION

2.1. Adiabatic Temperature Gradient

A first condition for convection to be possible is the existence of a
negative temperature gradient. A small element of fluid that is displaced
upwards will always be at a higher temperature than its neighbors in the
upper layers and therefore lighter. Thus, it will tend to move upwards and
the motion will be amplified. This simple argument is valid provided two
conditions are fulfilled: the dissipative effects must be negligible and the
fluid element must remain at a constant density along its movement in the
hydrostatic pressure gradient. But in large-scale atmospheres, the latter
hypothesis is not true anymore. When a compressible fluid rises, it expands
and consequently cools down. So there exists a negative temperature gra-
dient for which an element that rises remains always at the same temperature
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as the nearby elements. It is called the adiabatic temperature gradient
(ATG), or in geophysical usage, the adiabatic lapse rate [9]. Therefore, in
order for the instability to take place, the adverse temperature gradient
must be greater than the ATG [6].

Consideration of the ATG is usually relevant only in large geophysical
flows but not at the laboratory scale. For example, let us consider the
adiabatic gradient for air, which at T % 300 K is approximately 10−2 K · m−1.
And, in a typical laboratory layer of 3 × 10−2 m, a Rayleigh number of 104

(in its classical definition) corresponds to a temperature gradient of around
102 K · m−1 which is four orders of magnitude greater than the ATG.
Whereas, over a depth of 10 m, (which is the small end of atmospheric
scales), such a Rayleigh number is reached for a temperature gradient of
about 10−8 K · m−1. Hence, the ATG which was completely negligible in air
at the centimeter level, becomes overwhelming dominant for layers thicker
than 10 m. The classical Rayleigh criterion becomes invalid. Owing to this
ATG, it is difficult to model atmospheric flows at laboratory scales.

The more commonly used means to do so is the use of stratified salt-
water tanks, enabling large stratifications in reasonnably small containers
(a few meters). But, this technique encounters some difficulties, among
others, the non-accurate repetitivity of the experiment and the relatively
short lapse of time before the salt gets completely mixed. This is the reason
why SCFs, which are stably stratified and in which ATG has been observed
and measured in small cells [14], are good candidates for laboratory-scaled
experiments for geophysical flows. To confirm this suggestion, we had to
check that their peculiar hydrodynamics when confined in a cell did not
induce notable differences with the usual cases.

2.2. Description of Model

The fluid is confined initially motionless in a thin horizontal cell (see
Fig. 1). The density is the critical density rc, and the average temperature Ti

is slightly above the critical temperature Tc. An adverse temperature gra-
dient is imposed in the cell by setting the upper thermostated plate at a
lower temperature than the lower one. The stratification is assumed to be
small enough to insure constant properties of the fluid throughout the cell.
The fluid motion is modelled by the Navier–Stokes equations, the fluid is
thus treated as a continuous medium. Close to the critical point, the vali-
dity of this last assumption is to be verified because of the diverging corre-
lation length. According to Stanley [15], the so-called hydrodynamic limit
is located around (T − Tc)/Tc % 10−5, which means for He3, (T − Tc)=
30 mK.
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Fig. 1. SCF cell.

The system of equations is formed by the equations of Navier–Stokes,
the equation of energy, and an equation of state written in a general form.
The system is written in a nondimensional form using the following
variables or unknowns (with (x, y, z) the space variables, t, the time vari-
able, and (u, v, w) the components of the velocity) [7]:

Tg=T/Tc Pg=P/Pc rg=r/rc

(ug, vg, wg)=(u, v, w)/Vref tg=tVref/L

(xg, yg, zg)=(x, y, z)/L

(1)

with the subscript c referring to the critical coordinates of the variable and
Vref=g/(rc L), the speed of the viscous diffusion (g is the shear viscousity).
The time scale of viscous diffusion was chosen instead of the time scale of
temperature diffusion more commonly used. Indeed, at the critical point
the heat capacities and the thermal conductivity diverge, making the typical
time of heat diffusion longer as the critical point is neared while the shear
viscosity is almost constant with respect to the proximity to the critical
point. Vref is thus almost independent of Ti, which makes it a good reference
velocity.

After having set the system of equations corresponding to the case of a
SCF in the initial state described above, a small perturbation is added to
the system. Then, an asymptotic expansion is considered where the pecu-
liarities of the SCFs, through the nondimensional coefficients, are taken
into account [7].

It is shown that the most general system of perturbation equations
compatible with the asymptotic behavior of the fluid properties is (at first
order, and where stars have been omitted):

Supercritical Fluids as Models for Geophysical Flows 687



N · u1=0

“u1

“t
= − NP1 − N · y1 − r1

“T1

“t
+

1
Fr2

1“T0

“z
+atg2 w1=

1
Pr

gT1

r1= − bpqT T1

(2)

The subscript 0 refers to the base flow, and the subscript 1 is used to label
the first order perturbations, y1 (nondimensional perturbed fluid stress
tensor), bp=−(Tc/rc) (“r/“T)P (nondimensional isobaric expansion
coefficient), qT=(Pc/rc) (“r/“P)T (nondimensional isothermal expansion
coefficient), and Pr and Fr are the usual Prandtl and Froude numbers
(Pr=gCp/l, Fr=Vref/`gL), while atg is the nondimensional adiabatic
temperature gradient (L/Tc) rg(“T/“P)S.

2.3. Interpretation

The system in Eq. (2) is equivalent to a linearized Boussinesq system
of equations, provided the initial temperature gradient is replaced by
“T0
“z +atg. Hence, the ‘‘corrected’’ Rayleigh number is written as follows:

rgCpL4

lm
1 “r

“T
2

P

5“T0

“z
+rg 1“T

“P
2

S

6=Racorr. (3)

Thus, convection threshold near the critial point can be approached by the
criterion of the ‘‘corrected’’ Rayleigh number: the initial diffusive heat
transfer is stable provided that Racorr < Rac. Convective instability arises
when Racorr > Rac. The critical Rayleigh number has the same value as the
one obtained with Boussinesq equations. It depends on the boundary con-
ditions which are imposed to the system [16]. The crossover, in the con-
vection onset, from the Rayleigh to the adiabatic temperature gradient
regime has been observed by Kogan and Meyer [17], verifying the above-
mentionned stability criterion.

Because of the corrected Rayleigh number, the criterion for the onset
of convection is intermediate between the Rayleigh criterion which is based
on the comparison of Rac to the Rayleigh number and the Schwarzchild
criterion which is based on the comparison of the “T0

“z with the ATG. Indeed,
let us isolate the critical temperature gradient:
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688 El Khouri and Carlès



The second term on the right-hand side of the equation is the ATG, it
exhibits little variation with respect to the proximity to the CP. On the
other hand, the first term is highly dependent on the proximity to the CP: it
is asymptotically small close to Tc and becomes much larger than the ATG
far from Tc. Hence, for a SCF confined in a cell, the convective stability
will be characterized by the classical Rayleigh criterion far from the CP,
and by the Schwarzchild criterion close to the CP. The corrected Rayleigh
criterion, as described above, dominates the onset of convection for any
initial conditions [7].

3. GENERATION OF INTERNAL GRAVITY WAVES IN AN SCF
CELL

As we have already noted, a SCF at rest in a gravity field is a stably
stratified fluid, its density decreasing with height. When the fluid is at con-
stant temperature, vertical motions tend to carry a heavier fluid upward
and a lighter fluid downward which is a stable situation. A fluid particle
which gets displaced vertically is subjected to a buoyancy force tending to
pull it back to its initial position. This restoring force is thus responsible for
the driving of oscillating motions of the fluid particle. The internal motions
are named IGW. An important parameter to take into consideration is the
Brunt–Vaïsälä frequency. It can be considered as the superior limitation to
the frequency of the IGW. This frequency is obtained as the sum of two
terms, one of which is a function of the initial stratification of the fluid and
the other a function of its sound velocity. The square of the Brunt–Vaïsälä
frequency is classically written as

N2=−1g
r

dr

dz
+

g2

c2
2 . (5)

3.1. Problem Under Study

We used the same hypothesis and the same nondimensionalised equa-
tions as described in Section 2.2 [10]. But this time the fluid is confined at
a mean critical density between two thermostated walls separated by a dis-
tance L (see Fig. 1). It is subjected to vertical gravity and is initially at
thermal and mechanical equilibrium (i.e., motionless and at the same tem-
perature as the walls). The initial configuration is one of hydrostatic
density and pressure stratification. Then, small perturbations are added to
that fluid configuration and give birth to self-oscillations of the fluid under
the form of IGW. The perturbations are functions of the space variables
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(x, y, z) and of the typical time scale of IGW, y, which is still left unde-
termined but is assumed to be much shorter than the typical time scale of
viscous diffusion (for which is defined the variable t).

It is shown that the most general system of equations (where stars
have been omitted) compatible with the asymptotic behavior of the fluid
properties is then [10]

N · u1=0+O 1 1
qT

2

r0u1y
= − NP1 − r1 · ez+O(Fr)

r1y
+r0z

w1=0+O 1 1
qT

2

ap T1+r1=
rc qT V2

ref

Fr2Pc
P1

(6)

where the notations used are the same as those in Section 2.2. The typical
time scale of the IGW is defined as

y=
t

Fr
(7)

(rc qT V2
ref)/(Fr2Pc)=r0 z/r0 and can be identified with the square of the

Brunt–Väisälä frequency in Eq. (5), in which the acoustic component is
negligible (see Ref. 10 for further details).

The system of Eqs. (6) is the classical system governing internal gravity
waves in an incompressible, nonviscous, nonconducting fluid. Asymptotic
analysis thus shows that SCFs, as far as IGW are concerned, behave at
small length scales like weakly compressible fluids (air or water, for
example) do at large scales.

3.2. Possible Coupling with the PE

We now must check whether the peculiar hydrodynamics of SCFs
interfere with IGW. Indeed, the perturbations inside the SCF cell generate
density, pressure, and temperature variations. The difference of tempera-
ture induced near the thermostated walls leads to the formation of con-
ductive boundary layers near these walls, in which the fluid temperature
adapts to the thermostated walls. Due to the high compressibility of the
SCF, these boundary layers expand or contract, which in turn results in a
compression or expansion of the bulk fluid (PE mechanism). As a conse-
quence of this dynamic effect, the boundary layers act like a piston moving
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back and forth from the wall. In other words, the bulk fluid does not bump
on a solid boundary but on a moving layer of fluid which oscillates on the
time scale of the PE. It must be checked whether this oscillating motion of
the boundary layers interferes with the dynamics of the IGW (such a cou-
pling has indeed already been predicted in the case of forced oscillations
[18]).

In order to predict whether such a coupling is possible in the case of
IGW, it is necessary to calculate the order of magnitude of the velocity in
the boundary layers. If it is of the same order as the bulk velocity, then a
coupling can appear which will reshape the flow. To check the occurrence
of such a coupling, it is necessary to linearize the system describing IGW in
a SCF with the time scale of the PE, yPE, being of the same order of mag-
nitude as the time scale of the IGW. This condition mathematically
translates to: yPE 5 y . qT 5 1/Fr, with qT the timescale of the PE [19].
An order one function, C, is thus defined as: C=Fr qT=O(1). The
unknowns X̄ are sought as wavelike solutions, periodic in both space and
time.

X̄=X°(z) e ikx x e iky y e iwyPE. (8)

The following dispersion equation is found:

w°zz − N2w°z − k2 11 −
N2

Cw2
2 w°=0, (9)

where k=`k2
x+k2

y. When applying a solid-wall condition to the velocity
solution, an incompatibility appears: the thermal boundary conditions are
not verified anymore. The temperature oscillates close to the walls although
the walls should remain at constant temperature. Thermal boundary layers
are thus introduced [10], in which heat diffusion is no longer neglected.
Different spatial domains are considered: the lower boundary layer (with
its own vertical space variable, z̃=z/d with d the boundary layer thick-
ness), the bulk (where the same space variables (x, y, z) are used), and the
upper boundary layer (where a third vertical space variable is defined,
ẑ=(z − 1)/d). In each domain, the properties of the fluid are decomposed
again into the initial hydrostatic profile to which is added a small pertur-
bation. These perturbations vary on the space scale of the corresponding
domain. The asymptotic calculations are performed in the lower boundary
layer, the bulk, and in the upper boundary layer. The bond between the
three regions is ensured by matching conditions:

lim
z̃ Q .

Tboundary layer=lim
z 0 0

TBulk lim
ẑ Q −.

Tboundary layer=lim
z 0 1

TBulk.
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This leads to the order of magnitude of the velocity in the boundary layers
and in the bulk being

[u, v, w]boundary layer=O(a qT) [u, v, w]bulk=O 1a qT

Fr
2, (10)

where a is the amplitude of the perturbation of the temperature in the bulk
and in the boundary layer. With 1/Fr being much larger than one (typi-
cally 80 000 for He3 and 40 000 for CO2 in centimeter-length cells), the
velocity in the boundary layers is always much smaller than the bulk veloc-
ity, whatever the proximity to the critical point. Thus, the dynamical
response of the boundary layers never interferes with the behavior of the
IGW in the bulk fluid. There can never be a coupling between the PE and
the IGW, which confirms the analogy between the SCF and geophysical
IGW.

4. CONCLUSION

It has been shown in Section 2, that in the case of an initial state of
pure conduction the PE plays no role in the onset of convection. The tran-
sition between the conductive and convective regimes is simply governed by
a corrected Rayleigh criterion, which is equivalent to the classical Rayleigh
criterion in which the temperature gradient is corrected by the adiabatic
gradient to account for the effect of stratification. It has then been shown
in Section 3, that incompressible systems of equations were relevant to
describe internal gravity waves in SCF although their compressibility is
asymptotically divergent. As in the case of convective stability, PE does not
influence the dynamics of the IGW.

SCFs confined in a small cell have hydrodynamical properties which
they share with large geophysical flows. It thus seemed very interesting to
use them as scaled down experimental models for such flows. But the
peculiarity of their properties and hydrodynamics was an issue. In the
study presented in this article, we have shown that this peculiar behavior of
an SCF does not interfere with IGW or the onset of natural convection. It
is perfectly relevant to use SCFs at the laboratory scale to study geophysi-
cal IGW and natural convection.
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